Asymptotic properties of abelian integrals arising in quadratic systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian integrals in holomorphic foliations

The aim of this paper is to introduce the theory of Abelian integrals for holomorphic foliations in a complex manifold of dimension two. We will show the importance of Picard-Lefschetz theory and the classification of relatively exact 1-forms in this theory. As an application we identify some irreducible components of the space of holomorphic foliations of a fixed degree and with a center singu...

متن کامل

Modules of Abelian Integrals and Picard-fuchs Systems

We give a simple proof of an isomorphism between the two C[t]-modules: the module of relative cohomologies Λ/dH ∧ Λ and the module ofAbelian integrals corresponding to a Morse-plus polynomial H in two variables.Using this isomorphism, we prove existence and deduce some properties of thecorresponding Picard-Fuchs system. Department of Mathematics, Purdue University, West Lafayett...

متن کامل

Modules of the Abelian integrals and the Picard–Fuchs systems*

We give a simple proof of an isomorphism between two C(t)-modules corresponding to bivariate polynomial H with non-degenerate highest homogeneous part: the module of relative cohomologies 2/dH ∧ 1 and the module of Abelian integrals. Using this isomorphism, we prove the existence and deduce some properties of the corresponding Picard–Fuchs system. Mathematics Subject Classification: 14D05, 32S4...

متن کامل

LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS

We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

متن کامل

Uniform Asymptotic Bound on the Number of Zeros of Abelian Integrals

We give a uniform asymptotic bound for the number of zeros of complete Abelian integrals in domains bounded away from infinity and the singularities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin

سال: 2000

ISSN: 1370-1444

DOI: 10.36045/bbms/1103055691